Cytotoxic Peroxides from *Artemisia stolonifera*

Hak Cheol Kwon, Sang Un Choi\(^1\), and Kang Ro Lee

Natural Products Laboratory, College of Pharmacy, SungKyunKwan University, Suwon, Kyunggi-Do 440-746, Korea, and \(^1\)Korea Research Institute of Chemical Technology, Daejeon 136-702, Korea

(Received January 21, 2000)

Two sesquiterpene endoperoxides, \(1S, 4R, 6R\)-1,4-endoperoxy-bisabola-2,10-diene (I), 1R, 4S, 6R-1,4-endoperoxy-bisabola-2,10-diene (II), and a sesquiterpene hydroperoxide, \(1\beta\)-hydroperoxygermacra-4(15), 5,10(14)-triene (III) were isolated from the aerial parts of *Artemisia stolonifera* (Compositae). Their chemical structures were assigned by spectral evidences. Compounds I and II exhibited cytotoxicity against five human tumor cell lines with their ED\(_{50}\) values ranging from 0.20 to 5.43 \(\mu\)g/ml and from <0.1 to 0.87 \(\mu\)g/ml, respectively.

Key words: *Artemisia stolonifera*, Compositae, Sesquiterpene peroxide, \(1S, 4R, 6R\)-1,4-Endoperoxy-bisabola-2,10-diene, 1R,4S,6R-1,4-Endoperoxy-bisabola-2,10-diene, \(1\beta\)-Hydroperoxygermacra-4(15), 5,10(14)-triene, Cytotoxicity

INTRODUCTION

Artemisia stolonifera (Compositae), a perennial herb which is common in Korea, has been used as a folk medicine to treat eye disease, retention of urine and fever (Lee, 1989; Song, 1990). In our previous studies of *A. stolonifera*, we reported the isolation of four coumarins and aromatic compounds (Lee et al., 1996; Hong et al., 1996). Terpene peroxides are very interesting topics because they frequently possess many biological activities such as cytotoxic and antiviral activities (Sam et al., 1998). In peroxide screening of domestic medicinal plants, \(\text{CH}_2\text{Cl}_2\) extract of *Artemisia stolonifera* showed positive reaction in peroxide test (Lee, 1991). The repeated chromatographic separation of the \(\text{CH}_2\text{Cl}_2\)-soluble peroxide fraction afforded two sesquiterpene endoperoxides (I and II) and a sesquiterpene hydroperoxide (III) (Fig. 1). The present paper describes the isolation, structural characterization and cytotoxicity of two endoperoxides.

MATERIALS AND METHODS

General experimental procedure

The EIMS spectrum was measured on VG70-VSEQ (VG ANALITICAL, UK). The IR spectrum was measured with a shimadzu IR-435. The \(^1\)H- and \(^13\)C-NMR spectra were recorded with Bruker AMX-500. The column of LPLC used was Lobar\(^*\)Lichroprep Si-60 (Merck) and pump was DURAMAT 80 (Germany). HPLC was JAI-LC 908 model with UV and Refractive dual detector system and connected JAIGEL-1H (20 x 600 mm) and JAIGEL-2H (20 x 600 mm) column. TLC was performed on precoated Kiesel gel 60 \(F_{254}\) plates (Merck). Silica gel for column chromatography was Kiesel gel 60 (70-230 mesh, 230-400 mesh, Merck).

Plant materials

Correspondence to: Natural Products Laboratory, College of Pharmacy, SungKyunKwan University, Suwon, Kyunggi-Do 440-746, Korea E-mail: krlee@yurim.skku.ac.kr
Artemisia stolonifera was collected in the Kwang-Duck Mt. in Kyunggido in August 1994. A voucher specimen is deposited in the College of Pharmacy at SungKyunKwan University.

Test for cytotoxicity in vitro

Sulforhodamin B Bioassay (SRB) was used as a cytotoxicity screening method. Activities of each compounds were tested in several concentration levels against five cultured human tumor cells; A549 (non small cell lung adenocarcinoma), SK-OV-3 (ovarian), SK-MEL-2 (skin melanoma), XF498 (CNS) and HCT15 (colon) in vitro (Ryu et al., 1992).

Extraction, separation and purification of compounds

Dried and chopped aerial parts of *Artemisia stolonifera* (2 kg) were extracted with CH$_2$Cl$_2$ at room temperature. The concentrated CH$_2$Cl$_2$ extract (21 g) was chromatographed through a silica gel column using a gradient solvent system of hexane:EtOAc (10:1-1:1) to yield six fractions designated as AS1-AS6. The peroxide positive AS4 fraction (200 mg) was separated by column chromatography on a silica gel eluted with hexane:CH$_2$Cl$_2$ (1:3) and purified with Lobar| column (hexane:EtOAc=8:1) to afford compound III (10 mg, Rt=47.5 min). The peroxide positive AS6 fraction (170 mg) was further subjected to column chromatography over silica gel eluted with hexane:CH$_2$Cl$_2$ (1:2) and purified with JAI recyclic prep. HPLC (CHCl$_3$, flow rate 3.5 ml/min) to afford compound I (15 mg, Rt=25.73 min). The peroxide positive AS4 fraction (200 mg) was chromatographed on a silica gel eluted with hexane:EtOAc=8:1 to afford compound II (10 mg, Rt=47.5 min). The peroxide positive AS6 fraction (170 mg) was further subjected to column chromatography on a silica gel (hexane:CHCl$_3$:acetone=7:3:1) and purified with Lobar| column (hexane:EtOAc=8:1) to afford compound III (10 mg).

RESULTS AND DISCUSSION

Compound I was obtained as colorless oil and slowly became blue color in peroxide reagent on TLC plate, suggesting an endo-peroxide (Lee, 1991). Compound I showed a molecular ion peak at m/z 236 in EIMS. From the EIMS, 1H-NMR (24H) and 13C-NMR (15C) spectra, the molecular formula was deduced to be C$_{15}$H$_{24}$O$_{2}$. The formula showed four unsaturated bonds equivalents. The 13C-NMR spectrum showed four olefinic carbon signals at 8124.62, 8126.05, 8131.34, 8141.28 and two oxygenated methines (84.39 and 84.59), three methyl singlets (81.60, 81.69 and 81.93) and a methyl doublet (80.99). These data suggested a bisabolane endoperoxide skeleton for compound I. 1H-NMR spectrum showed two olefinic protons (85.11 and 86.33), two oxygenated methines (84.39 and 84.59), three methyl singlets (81.60, 81.69 and 81.93) and a methyl doublet (80.99). These data suggested a bisabolane endoperoxide skeleton for compound I.
the previous papers (Jang et al., 1993, Sy et al., 1997), the gross structure I of was assigned as 1, 4-endoperoxoy-bisabola-2, 10-diene.

IR, UV and NMR spectra of compound II were almost same as those of compound I. The differences were chemical shifts of H-5, H-6 and H-7 protons in the ¹H-NMR spectrum. H-5 protons of compound I appeared at δ1.67 and δ1.85 and II at δ1.03 and δ2.35, respectively. H-6 proton in an α-endoperoxoy group was strongly deshielded and H-7 proton was strongly shielded as compared with β-endoperoxoy structure (Sy et al., 1997). These observations indicated that the endoperoxoy group in compound II was to be α-oriented, and in compound I to be β-oriented. Based on the analysis of the NMR spectral data and the comparison of the data in the previous papers (Sy et al., 1997), the structure of I was assigned as 1S, 4R, 6R-1, 4-endoperoxoy-bisabola-2, 10-diene, and II as 1R, 4S, 6R-1, 4-endoperoxoy-bisabola-2, 10-diene. The NMR spectral and physical data of compounds I and II were in good agreement with those reported in the previous paper (Sy et al., 1997). Compounds I and II were also reported from Senecio selloi, and Eupatorium rufescens (Ruecker et al., 1996).

Compound II was also previously isolated from Artemisia selengensis in our group (Jang et al., 1993), but the stereo-chemistry of the endoperoxoy group was not determined.

Compound III was obtained as colorless oil and positive with peroxide reagent (Lee, 1991). The IR spectrum showed the presence of an OOH group at 3500 cm⁻¹. The molecular ion peak in EI-MS was not detected. The ¹H-NMR spectrum showed two secondary methyl groups (δ0.83 and δ0.92), an oxygenated methine proton (δ4.15), two olefinic protons (δ5.46 and δ6.04), four exomethylene protons (δ4.89, 84.97, δ5.21, and δ5.34), and a hydroperoxy proton (δ7.51). The ¹C-NMR spectrum exhibited the presence of 15 carbon signals that composed of six olefinic carbon signals at δ113.20, δ114.58, δ129.63, δ138.06, δ146.35 and δ147.97, one oxygenated carbon signal at δ89.96, and eight aliphatic signals at δ20.48, δ20.74, δ29.30, δ30.69, δ35.57, δ36.52, δ31.90 and δ52.69. These spectral data suggested that III was a sesquiterpene with a secondary hydroperoxy group. Based on the available chemical structures of the hydroperoxides (Bohlmann et al., 1982) and NMR spectral data, the structure of compound III was determined as 1S, 7S-1 [3-hydroperoxygermacra-4 (15), 5, 10 (14)-triene. The NMR spectral and physical data of compound III were in good agreement with those reported in the previous paper (Bohlmann et al., 1982).

The in vitro cytotoxicity of compounds I and II against cultured human tumor cell lines, A549 (non small cell lung adenocarcinoma), SK-OV-3 (ovarian), SK-MEL-2 (skin melanoma), XF498 (CNS) and HCT15 (colon), was studied, and the results are shown in Table I. Compounds I and II exhibited potent cytotoxicity against five human tumor cell lines with their ED₅₀ values ranging from 0.20 to 5.43 μg/ml and from <0.1 to 0.87 μg/ml, respectively. These data shows that compound II showed very strong cytotoxic activity against SK-OV-3 (colon cancer cells) (ED₅₀: <0.1 μg/ml). The cytotoxicity of compound III was not tested, as it was very unstable and left in only trace quantities.

ACKNOWLEDGEMENTS

This paper was supported by Faculty Research Fund, SungkyunKwan University, 1998. We wish to thank Bang, Eun Jung and Seo, Ju Jung for the measurements of NMR and MS spectra.

REFERENCES

Sam S., Frederick A.V., Thomas H.C. and Phillip C., Isolation and cytotoxic evaluation of marine sponge-